skip to main content


Search for: All records

Creators/Authors contains: "Mekik, Figen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stable isotope data from tests of four planktonic foraminifer species in core tops on the Rio Grande Rise (RIO) fail a field test of reproducibility until corrections are made for various environmental effects. The regionally uniform and strongly stratified surface ocean hydrography across RIO allows the identification of causes of variability in δ18O and δ13C data in addition to the effects of surface ocean temperature and nutrient content. A previously calibrated calcite dissolution proxy indicates that the dissolution of foraminifer shells in sediments has no effect on δ18O and δ13C in tests of foraminifers from core tops on RIO. Furthermore, vital effects within and among foraminifer species are not sufficient to explain the large variability of δ18O and δ13C data observed on RIO. Instead, correctly estimating species‐specific habitat depth ranges and adjusting δ13C values for ocean/atmosphere carbon exchange are necessary to accurately reconstruct the hydrography of surface waters on RIO.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect an ice age reduction in water column denitrification. We report foraminifera shell‐bound nitrogen isotope (FB‐δ15N) measurements for the two speciesNeogloboquadrina dutertreiandNeogloboquadrina incomptaover the last 35 ka in two sediment cores from the eastern equatorial Pacific (EEP), both of which have the typical LGM‐to‐Holocene increase in bulk sediment δ15N. FB‐δ15N contrasts with bulk sediment δ15N by not indicating a lower δ15N during the LGM. Instead, the FB‐δ15N records are dominated by a deglacial δ15N maximum, with comparable LGM and Holocene values. The lower LGM δ15N of the bulk sediment records may be an artifact, possibly related to greater exogenous N inputs and/or weaker sedimentary diagenesis during the LGM. The new data raise the possibility that the previously inferred glacial reduction in ETP water column denitrification was incorrect. A review of reconstructed ice age conditions and geochemical box model output provides mechanistic support for this possibility. However, equatorial ocean circulation and nitrate‐rich surface water overlying both core sites allow for other possible interpretations, calling for replication at non‐equatorial ETP sites.

     
    more » « less
  4. Abstract

    El Niño Southern Oscillation (ENSO) is the largest source of interannual climate variability on Earth today; however, future ENSO remains difficult to predict. Evaluation of paleo‐ENSO may help improve our basic understanding of the phenomenon and help resolve discrepancies among models tasked with simulating future climate. Individual foraminifera analysis allows continuous down‐core records of ENSO‐related temperature variability through the construction and comparison of paleotemperature distributions; however, there has been little focus on calibrating this technique to modern conditions. Here, we present data from individual measurements of Mg/Ca in two species of planktic foraminifera, surface dwellingGlobigerinoides ruberand thermocline dwellingNeogloboquadrina dutertrei, from nine core tops across the equatorial Pacific (n70 per core for each species). Population variance, kernel probability density functions, and quantile‐quantile analyses are used to evaluate the shape of each Mg/Ca‐temperature distribution and to compare them to modern conditions using monthly temperatures from the Simple Ocean Data Assimilation. We show that populations of individual Mg/Ca measurements in bothG. ruberandN. dutertreireflect site‐specific temperature distribution shapes and variances across the equatorial Pacific when accounting for regional differences in depth habitats. Individual measurements of both taxa capture zonal increases in population variance from the western equatorial Pacific to the central equatorial Pacific and a spatially heterogeneous eastern equatorial Pacific, consistent with modern conditions. Lastly, we show that populations of individual Mg/Ca measurements are able to recover meaningful differences in temperature variability between sites within the eastern equatorial Pacific, lending support to this tool's application for paleo‐ENSO reconstructions.

     
    more » « less
  5. Abstract

    230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of230Th as a constant flux proxy. Anomalous230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).

     
    more » « less